
The Cedalion Workbench

Boaz Rosenan

22997: Graduate Project in Computer Science

Software Engineering Lab

Dept. of Mathematics and Computer Science

The Open University

Supervisor: Prof. D. H. Lorenz

Contents

1 Introduction 4
1.1 Background . 4
1.2 The Cedalion Programming Language 6
1.3 Development Status . 7

2 Requirements 8
2.1 Scope . 8
2.2 CedalionWorkbench Overview . 8
2.3 Functional Requirements . 10

2.3.1 Projectional Editing . 10
2.3.2 The Text Bar . 11
2.3.3 Auto-completion . 11
2.3.4 Aliases . 12
2.3.5 Context Menu . 12
2.3.6 Adapters . 12
2.3.7 De�nition Search . 13

3 Software Design 14
3.1 Software Architecture . 14

3.1.1 Client: The Eclipse Plug-in 14
3.1.1.1 Eclipse . 14
3.1.1.2 The CedalionWorkbench Plug-in 14
3.1.1.3 Figures and Commands 16

3.1.2 Server: The Logic Engine 16
3.1.2.1 SWI-Prolog . 16
3.1.2.2 The Cedalion Logic Engine 17
3.1.2.3 The Cedalion Base Code 17
3.1.2.4 User DSLs and Programs 18

3.2 Functionality . 19
3.2.1 Design Principles: Client/Server Approach 19

3.2.1.1 Client/Server Examples 19
3.2.1.2 Procedures and Commands 19

3.2.2 Requirements Walkthrough 20
3.2.2.1 Projectional Editing 20

1

CONTENTS 2

3.2.2.2 The Text Bar . 21
3.2.2.3 Auto-Completion 21
3.2.2.4 Aliases . 22
3.2.2.5 Context Menu 22
3.2.2.6 Adapters . 23
3.2.2.7 De�nition Search 23

Bibliography 24

A Communication Protocols 25
A.1 The Cedalion Public Interface (CPI) 25
A.2 Built-in Predicates . 25
A.3 Service Predicates . 25

Abstract

Cedalion is a programming language designed as a host for internal domain
speci�c languages (DSLs). It features syntactic freedom and composability of
DSLs, thanks to the use of projectional editing.

This software project provides a projectional editor for the Cedalion pro-
gramming langauage, named the CedalionWorkbench. It is developed in Java,
Prolog and Cedalion, as a plugin for the Eclipse platform.

3

Chapter 1

Introduction

This paper describes the design and implementation of the CedalionWorkbench,
which is a signi�cant part of my research. The implementation itself is an open-
source project hosted in SourceForge (http://cedalion.org). The source-code to
this project is accessible through the Mercurial repository, and there are regural
releases containing new features and bug-�xes.

1.1 Background

Cedalion is a Language-Oriented Programming Language [6]. As such, it is
a programming language designed for the Language Oriented Programming
paradigm. To our knowledge, this is the �rst language with this attribute.

Language-Oriented Programming (LOP) is, at least by name, a relatively
new software development paradigm. In the traditional approach, the program-
ming language is selected �rst, and then the software design process translates
the concepts of the problem domain into the concepts of that programming
language (such as identifying �problem-domain objects� in OOD and building
class diagrams based on them). In contrast to that, with LOP we �rst design
the programming-language to suite our needs, and then write the software using
that language. In other words, instead of bringing the problem-domain to the
language, LOP brings the language to the problem-domain.

The �programming languages� we end up with when using the LOP ap-
proach are usually oriented at a speci�c problem-domain, i.e., these are ususally
Domain-Speci�c Languages (DSLs). However, the term problem-domain here
is not restricted to a end-user problems. For example, in a billing system for a
Telecom carrier, the problem-domain is not restricted to the domain of billing
phone conversations. The analysts building the billing schemes are indeed most
interested in that problem domain, but there is much more into this kind of
system than just that. Querying the system logs for relevant (billable) informa-
tion, communicating with internal and external servers to collect information,
formatting the bills and providing user interface can all be considered �problem-

4

CHAPTER 1. INTRODUCTION 5

domains�, in the wider sense. As such, they all �deserve� their own DSLs for
e�ective implementation à la LOP.

The contemporary LOP approach [2, 3] advocates the use of multiple, in-
teroperable DSLs, each one focused on one problem-domain, such that together
they can cooperate to address large multiparadigm software. This approach is
very favorable for code reuse, since DSLs dealing with globally-relevant problem-
domains, such as user-interface or networking, can be shared in a very wide scope
(e.g., posted on the Internet).

Indeed, LOP seams promising, but there are challenges to overcome. The
main challenge associated with LOP is the need to e�ectively de�ne and imple-
ment DSLs. This is especially di�cult when we need these DSLs to be inter-
operable with one another, that is, allow code in one DSL be wrapped around
code in another. Traditional language implementation techniques, such as the
use of Lex and Yacc will not provide us with a solution for that problem.

Currently, there are two approaches that allow e�ective and modular DSL
development: Internal DSLs and Language Workbenches.

Internal DSLs These are DSLs that are de�ned from within an existing pro-
gramming language1, named the host language. Lisp and its dialects, Ruby,
Smalltalk and Haskell are known to be good hosts for internal DSLs. For ex-
ample, Ruby-on-Rails [1] is a web-development platform that makes extensive
use of internal DSLs.

Language Workbenches These are Integrated Development Environments
(IDEs) for de�ning, implementing and using External DSLs [3]. Their power is
in the fact they do not pose any limitations in terms of syntax and semantics
on the DSLs they support. Semantic freedom is inherent to the use of external
DSLs. The syntactic freedom is provided by the use of projectional editing [4],
which can be seen as the Model/View/Controller (MVC) Architecture, applied
to a textual programming language. With projectional editing, the code is being
edited through a view, displaying an underlying model, where the projection
(the �controller�) is determined as part of the language de�nition. Projectional
editing allows such DSLs to have any syntax, regardless of the limitations of
a certain parsing algorithm (parsing does not take place), and even syntactic
ambiguity. Disambiguation is done when entering code, by selecting the correct
construct from a menu. This way, while two di�erent phrases may look similar,
they are di�erent down at the model level.

LOP Languages There are signi�cant trade-o�s between these two approaches.
On the one hand, internal DSLs are easier to implement than external DSLs
(even when using language workbenches), but they are bound by the syntax and

1The term internal DSLs was coined by Fowler [3]. Others [5] use the term Embedded DSLs
to describe the same thing. We follow Fowler's terminology to avoid confusion with languages
such Embedded SQL, languages implemented using pre-processors on the host language. These
languages are actually external DSLs.

CHAPTER 1. INTRODUCTION 6

semantics of the host language. On the other hand, language workbenches pro-
vide freedom to create better DSLs, but implementing them is harder relative
to internal DSLs.

To overcome these trade-o�s, our research introduces the concept of LOP
Languages. These are programming languages designed to take the best of both
worlds, providing a good solution for LOP.

LOP Languages are good hosts for internal DSLs, allowing easy DSL im-
plementation. However, they import two important features from language
workbenches:

1. Projectional Editing, as a way to provide syntactic freedom; and

2. DSL Schema, a method to allow formal de�nition of the validity of DSL
code.

Cedalion is an instance in this class of languages, providing a proof of concept.
The rest of this document will focus on Cedalion speci�cally, where the discussion
brought in this section provides the motivation.

1.2 The Cedalion Programming Language

In Section 1.1 we explored the motivation for Cedalion. In this section we provide
a brief overview of the Cedalion programming language.

Following the description in Section 1.1 and in [8], to qualify as an LOP
language, Cedalion needs to be able to host internal DSLs and support DSL
schema and projectional editing.

Cedalionis a logic-programming langauge, mostly based on Prolog. As such,
it can host internal DSLs following the method described by Menzies [7].

To support DSL schema, Cedalion provides a static type-system, based on
Hindley/Milner type inference. This provides the basic mechanism for de�ning
and enforcing schemata for DSLs. Each new construct needs to have a type-
signature de�ned, de�ning the construct's type in terms of the types of its
arguments. Collecting the type-signatures of all the constructs of a certain
DSL can be seen as its schema. They provide a set of rules for the structural
validity of DSL code. The type-system will then enforce these rules, so that any
well-typed piece of DSL code will be considered �valid� in the eyes of the DSL
schema. In addition to the type-system, DSL developers can de�ne their own
�checkers� to check for domain-speci�c terms of validity. This allows Cedalion

to report errors in a way that makes sense to its DSL users.
Finally, to support projectional editing, Cedalion includes projection de�ni-

tions, which are statements that transform language constructs to visualization
objects. These objects are supported by the CedalionWorkbench, which displays
them to the user.

A complete de�nition of a language construct in Cedalion consists of a type-
signature, a projection de�nition (optional, defaults to a Prolog-like syntax),
and a semantic de�nition. The semantic de�nition depends on the type of

CHAPTER 1. INTRODUCTION 7

Figure 1.1: A screenshot of a Hello, World program in Cedalion

language construct being de�ned. In Cedalion parlance, such a construct is
called a concept.2

Figure 1.1 shows a �Hello, World� program in Cedalion. The program con-
tributes a context-menu entry labeled �Say Hello�, that once clicked it shows
the object that was right-clicked (to receive the context menu) in the Cedalion

View, to the right of the word �Hello�. The code begins with a de�nition of a
new concept - the �Say hello to� procedure. It begins with a type signature (the
declare/where statement), followed by a projection de�nition (the display/as
statement), followed by a semantic de�nition (the procedure statement), and �-
nally, the de�nition of the context menu entry, associating the label �Say Hello�
with the procedure.

1.3 Development Status

The Cedalion implementation is an open-source project hosted in SourceForge.
Its declared state of maturity is �pre-alpha�, meanning it is a work-in-progress
and is not yet ready for prime-time use. Nevertheless, Cedalion gets around ten
downloads per week from di�erent countries around the globe. Judging by the
reported statistics, some of these downloads are made by random visitors to the
website, while a few of them seem to be made by repeating users, coming to get
a newer version. The on-site documentation includes a �hello, world� tutorial,
introducing the concepts of projectional editing to the users. However, judging
from the number of views on that page, it has not been tried by too many
people.

The main challenge in the implementation of Cedalion is stability. Cedalion's
projectional editing allows for user code to run from within the projectional
editor, as it is being edited. Buggy code, even ill-typed code can still run in
this context. The key in stabilizing such software is to localize the e�ect of
bugs. The e�ect of bugs resulting in an exception is easy to localize (catch the
exception and move on). However, some bugs result in non-termination, which
is signi�cantly harder to contain.

2The same term is also used in [2].

Chapter 2

Requirements

This chapter describes the requirements from the CedalionWorkbench.

2.1 Scope

The scope of this project (and thus of its requirements) is the CedalionWorkbench,
an Eclipse plug-in desinged as a dedicated editor for the Cedalion programming
language.

2.2 CedalionWorkbench Overview

Cedalion code cannot be edited using traditional text editors and can only be
edited using a special projectional editor, a dedicated editor for projectional
editing. The CedalionWorkbench [?], an Eclipse-based IDE, implements such a
projectional editor. Projectional editing o�ers an alternative to the traditional
parsing approach. With projectional editing, instead of editing the code in a
text editor and then parsing it to form an abstract syntax tree (AST) of the
code, we edit the AST directly, and present it to the user using a projection, that
is, a transformation to some human readable representation, which is usually
(but not necessarily) textual.

Figure 2.1 is a screenshot of the Cedalion workbench. The editor screen
is structured similar to the user interface of a Web browser. The top of the
window contains a text bar (similar to the address bar of a Web browser) with
a few action buttons to its left. The text bar displays the text representation of
the currently selected Cedalion code. The rest of the window's real-estate (code
area) is dedicated to projecting the content of the �le being edited. The tab
label indicates the name of the �le.

Even at �rst glance, one can see that the Cedalion workbench di�ers from
a text editor. The projected Cedalion code contains special symbols, and it is
displayed using varying font sizes and unorthodox layout. The code comprises
a hierarchy of rectangular elements (we call terms), nested inside one another.

8

CHAPTER 2. REQUIREMENTS 9

Figure 2.1: A screenshot of the Cedalion workbench

CHAPTER 2. REQUIREMENTS 10

When the user clicks on a term, a selection box appears around it, and the
content of the text bar is replaced with a textual �Prolog-like� projection of
that term. This textual representation can be edited, and when hitting Enter,
the changes are applied to the code area, assuming the text complies with the
simple Prolog-like syntax.

The edited code can be either valid or invalid Cedalion code. Unlike many
syntax driven editors, Cedalion does allow invalid code to be edited. For example,
an unde�ned term can be used. In such a case, Cedalion will mark this term
with an error marker (a red rectangle with a small red warning sign symbol at
its top left), and provide the details of the error as a tooltip. As can be seen
in Figure 2.1, in the case of an unde�ned concept, Cedalion claims a missing
signature, and uses type inference to suggest what this signature might be.
Indeed, double clicking the red warning sign will suggest inserting such a type
signature before the current statement. This is the way new concepts can be
introduced. Concepts and type signatures are discussed in [6].

2.3 Functional Requirements

2.3.1 Projectional Editing

Cedalion's syntax is based on projectional editing. Supporting this is the essence
of what the CedalionWorkbench is made to do. To support projectional editing,
the CedalionWorkbench provides an editor. This editor supports a model-view-
controller behavior, where:

• The model is the Cedalion program.

• The view is a visual, human readable representation of that program, and

• The controller consists of a set of rules de�ned in the Cedalion program
itself, de�ning how nodes in the model are translated to a view.

Applying the controller rules on the model provides the human readable rep-
resentation of the program. However, the view provides more than that. To
allow editing, the editor maintains traceability between view elements and their
underlying model elements. Each portion of the view representing a node in the
model is selectable. Editing operations made when such a view element e�ects
the underlying model node. Such operations replace the current node with a
di�erent one. After the editing operation has been performed, the modi�ed
model is re-projected to a view, synchronizing the view and the model.

The view consists of several types of elements (�gures), providing di�erent
visualization abilities. These include:

• Labels, displaying plain text.

• Symbols, displaying a single unicode character.

• Horizontal �ow, displaying its contained �gures horiozntally.

CHAPTER 2. REQUIREMENTS 11

• Vertical �ow, displaying its containd �gures vertically.

• Font modi�ers, modifying the style of the font in the �gures they contain.

• Text-color modi�er, modifying the color of the contained text.

• Line-border, displaying a solid rectangle around the contained �gure.

• Background, providing a colored background for the contained �gure.

• Raized / Lowered border : display a raized/lowered border around the con-
tained �gure.

• Expand �gure: contains two �gures: expanded and collapsed. Switches
between them when clicking the collapse/expand icon displayed next to
the �gure.

• Action �gure: performs some action when the contained �gure is double-
clicked.

• Brackets: surrounds the contained �gure with �brackets�, made of two
Unicode characters, for which the font size is adapted to match the height
of the contained �gure.

2.3.2 The Text Bar

At the top of the CedalionWorkbench editor window there is a text box, named
the Cedalion text bar. This text bar provides a textual representation of the
selected element. When the user selects a node in the projectional editor, the
content of the text bar is replaced with its textual representation. This textual
representation uses a Prolog-like syntax. The user can edit the content of the
text in the text bar. When the user presses the Enter key, if the content of the
text bar is valid with regard to the Prolog-like syntax, the selected node and all
the nodes below it are replaced with the content of the text bar, parsed.

The user can select nodes with a lot of content below them. To avoid very
long text in such cases, the sub-tree displayed in the text bar is trimmed to
a �xed depth. Trimmed nodes are represented with a dollar sign ($) followed
by a number. When parsing the text in the text bar, the CedalionWorkbench

replaces the dollar-sign-number sequences with the sub-trees they represent.
The trimmed sub-trees are stored for the duration of the editor's operation, to
allow text-level copy and paste of large trees.

2.3.3 Auto-completion

Plain use of the text bar as described in Subsection 2.3.2 is good when creating a
new language or creating new language constructs, as demonstrated in the Hello,
World example [?]. However, most of the time, when using existing language
constructs, auto-completion can be used to help the users �nd the constructs
they want, and avoid misspelled names.

CHAPTER 2. REQUIREMENTS 12

When entering text in the text bar, the user can press a key combination
(Control+Space) to get a list of suggestions. The CedalionWorkbench should
query the collection of concepts that can be used in the selected location, and
�nds ones which have aliases (explained next) starting with the string entered.
The list is then presented to the user for choosing the appropriate concept,
which is then inserted as a new term.

2.3.4 Aliases

Aliases are strings associated with concepts. Each concept has a �natural� alias,
which is its internal identi�er (the name Cedalion uses internally, regardless of
projection), without namespace pre�xing. Additional aliases can be de�ned
by the user. The CedalionWorkbench also infers aliases in some cases from
projection de�nitions (e.g., when the projection is a label, the content of the
label is used as an alias for this concept). Concepts and aliases have a many-
to-many relationship, where a single concept can have multiple aliases (e.g.,
its internal name and something based on its projection), and several concepts
can share the same alias. In the latter case, disambiguation should be done by
choosing the desired entry from the auto-completion list of choices.

2.3.5 Context Menu

The CedalionWorkbench provides a context menu for every term (a code element,
represented as a rectangular feature by the projectional editor). Right clicking
a term causes a pop-up menu to appear, listing operations relevant to this term.
Selecting this operation executes it, performing an action such as modifying
code or displaying content in the Cedalion view (a part of the CedalionWorkbench

made for displaying information and interacting with the user). User code can
contribute context menu entries by using context menu entry statements. These
statements associate the caption of the entry with an action. They also specify
a pattern for the term to be matched, in a form of a typed term. This allows
entries to be speci�ed for speci�c concepts, or speci�c types, thus making the
menu context-dependent.

2.3.6 Adapters

An adapter of type T1 to type T2 is a concept of type T2, which takes one
argument of type T1, and semantically acts as a proxy, adding no additional
meaning to its argument. Cedalion has a special declaration for declaring a
concept as an adapter. This allows the CedalionWorkbench to reconcile concepts
of type T1 in the context where a concept of type T2 is needed. Adapters
allow the CedalionWorkbench's auto-completion to o�er concepts of type T1 in
these cases, and when a type mismatch between T1 and T2 is presented, the
CedalionWorkbench automatically inserts the adapter to �x this error.

CHAPTER 2. REQUIREMENTS 13

2.3.7 De�nition Search

Concepts are centric to the way Cedalion software is programmed. Concepts are
introduced in Cedalion in both the DSL de�nition and the DSL code. To allow
Cedalion users to be able to understand the di�erent concepts and be able to
track their de�nitions, the CedalionWorkbench provides a mechanism for search-
ing concept de�nitions. When selecting a compound term, Cedalion's context
menu displays the option �Show De�nitions.� Selecting this option will display
the full story behind the concept associated with the selected term. This �story�
includes all aliases assigned to this concept, the type signature, projection de�-
nition and all semantic de�nitions. The nature of the semantic de�nitions for a
concept depend on the concept type. For example, for predicates, the semantic
de�nition includes all clauses contributing results to that predicate. A semantic
de�nition of a statement includes all rewrite rules translating this statement
into others. For a type, it includes all type signatures of concepts of that type.
The user can relate new de�ning statements to concepts using �de�nes� state-
ments. Each de�ning statement is displayed along with the �le name in which it
is de�ned. Clicking that de�nition will open that �le, and highlight the relevant
de�nitions with a green background.

Chapter 3

Software Design

3.1 Software Architecture

This chapter we describe the �anatomy� of the CedalionWorkbench implementa-
tion, identifying its main componenets, describing the role of each of them and
the interactions between them.

Cedalion is designed to be used in client/server settings, where the �client� is
responsible for interacting with the outer world, and the �server� contains the
Cedalion program, and provides the client with guidance as to how to perform
its job. The CedalionWorkbench is no exception for this. Here we describe its
structure, which is presented graphically in Figure 3.1.

3.1.1 Client: The Eclipse Plug-in

In the CedalionWorkbench, the �client� side consists of an Eclipse Plug-in imple-
mented in Java. This plug-in contributes the Cedalion Editor, the projectional
editor for Cedalion, and the Cedalion View, which allows Cedalion code to display
visuals. In addition, the plug-in conatins a collection of Java classes, that can
be used to perform client-side operations. The client side is depicted at the right
side of Figure 3.1.

3.1.1.1 Eclipse

At the bottom of the client stack is Eclipse, a third-party piece of software
that was initially developed by IBM, and then became open-source and is now
developed by a large group of voulenteers, sponsored by IBM. Eclipse is almost
entirely implemented in Java.

3.1.1.2 The CedalionWorkbench Plug-in

On top of Eclipse, is the CedalionWorkbench Plug-in. It is implemented in Java,
with an XML con�guration �le (plugin.xml) describing the contributions of this

14

CHAPTER 3. SOFTWARE DESIGN 15

Figure 3.1: The CedalionWorkbench Client/Server Architecture

CHAPTER 3. SOFTWARE DESIGN 16

plug-in to the Eclipse environment. As stated above, the two main contributions
provided by this part are the Cedalion Editor (class net.nansore.cedalion.eclipse.CedalionEditor),
and the Cedalion View (class net.nansore.cedalion.eclipse.CedalionView). The
editor is associated with the �le extension �.ced�, so that �les holding this ex-
tension will be opened using this editor, and will display the Cedalion logo in
the �le browser. In addition to the editor and view, the Cedalion plug-in is also
responsible for scanning the Eclipse workspace for �les with the �.ced� exten-
sion, and loading them into the server. This is how the user determines what
program runs on their system.

3.1.1.3 Figures and Commands

The CedalionWorkbench plug-in is an extension to the Eclipse platform, and it
is extensible by itself. Two kinds of extensions exist for the CedalionWorkbench

plug-in: Figures and Commands.
Figures are visual objects used for displaying Cedalion code. Figures are the

most basic elements, providing the basic display capabilities. Combining several
�gures together allows us to display complex terms.

Commands are objects providing the actions a Cedalion program can per-
form. Since Cedalion is a pure declarative language, the server side (containing
the Cedalion program) cannot do anything on its own. Instead, the client can
query it to get answers. These answers may include, which commands need
to be executed. The client holds a collection of commands available. These
include commands for manipulating the display (e.g., showing something in the
Cedalion View), modifying the Cedalion program (load a �le, add or remove a
statement), etc. Some of these commands, such as the ones for manipulating
the Cedalion program, require the assistance of the server. There are also control
commands, such as doAll (class net.nansore.cedalion.cmd.DoAll), which takes
a list of commands and executes them sequentially.

Both collections of commands and �gures are extensible, meanning that a
third-party user can add an Eclipse plugin containing their own implementa-
tions, and write a Cedalion program that makes use of the new �gures/commands.

3.1.2 Server: The Logic Engine

The server side's role is to contain the Cedalion program, and to allow the client
to query it. It is depicted at the left hand side of Figure 3.1.

3.1.2.1 SWI-Prolog

As can be seen at the left side of Figure 3.1, the server stack begins with SWI-
Prolog, a Prolog interpreter developed at the University of Amsterdam as an
open-source project. The choice of SWI-Prolog was rather arbitrary, based on
its popularity. Another candidate to consider is YAP (Yet Another Prolog),
developed at the University of Porto, Portugal, and the University of Rio De-
jenero, Brasil. YAP is also open-source, it is not as popular and probably less

CHAPTER 3. SOFTWARE DESIGN 17

stable, but provides sigini�cantly better performance. Replacing one Prolog
implementation with another requires a reasonable amount of porting work.

3.1.2.2 The Cedalion Logic Engine

Above SWI-Prolog, a Prolog program implements the Cedalion Logic Engine.
This is actually the implementation of the �core� of Cedalion. Contained in the
�le service.pl, this layer provides implementation for a communication proto-
col between the client and the server, providing access to its predicates. These
predicates include services for manipulating the Cedalion program, and the pred-
icates of the Cedalion program themselves. The services provided by the logic
engine include:

1. Loading (or re-loading) a Cedalion �le into the Cedalion Program.

2. Adding / Removing a statement from the Cedalion program.

3. Loading / Saving a Cedalion �le into / from an in-memory representation.

The Cedalion Logic Engine is also responsible for Cedalion's module system.
When loading Cedalion program �les, it adds module-speci�c pre�xes to names,
thus preventing collision between concepts with the same local name. Modules
can still access concepts de�ned in other modules by explicitly adding their
pre�x.

In addition, the Cedalion Logic Engine provides Cedalion with its builtin
predicates. These are Prolog predicates that are exported to the Cedalion en-
vironment by naming them within the builtin namespace. At present there are
around thirty such predicates.

3.1.2.3 The Cedalion Base Code

The Cedalion Logic Engine is capable of loading and running a Cedalion program,
but at this point, it cannot do much. The �core� Cedalion has its extensible core,
but it does not have a type-system and does not support projectional editing.
These features (and more) are provided by the Cedalion Base Code, the bootstrap
module. It has the following roles:

1. Provides implementation for the predicates in the Cedalion Public In-
terface (CPI) namespace. These are interface predicates used by the
CedalionWorkbench Plug-in. They answer questions such as �how do I
open a �le?� or �how do I visually display a construct?�. These predicates
complete the implementation of the CedalionWorkbench.

2. Provide Cedalion programmers the ability to control these predicates (and
thus, the Workbench's behavior), by providing language constructs that
manipulate the results of these predicates. This includes, for example, a
statement for de�ning projection de�nitions. Through rewrite rules these
statements e�ect the answer to the visualization predicate (cpi:visualizeDescriptor).

CHAPTER 3. SOFTWARE DESIGN 18

Figure 3.2: Cedalion code with an error

Another example is a statement that de�nes a context-menu entry. It ma-
nipulates the results of the query for context-menu entries for a certain
selection (cpi:contextMenuEntry).

3. Implement the Cedalion type-system. The type-system is implemented
as a collection of checkers, logic clauses contributing error messages in
certain situations. Checkers are queried by the predicates facilitating the
projectional editing, to provide decorations over the visuals. The most
common kind of such decorations is an error marker, a red rectangle with
a warning sign at its left. These inform the user that the code is invalid.
Recall that the type-system (a provider of such error markers) is used for
enforcing a schema for DSLs. Another kind of marker, also comming from
the type-system, is a tooltip associated with variables. These tooltips
display the inferred type for each variable. Figure 3.2 shows Cedalion code
from the Hello, World example in Figure 1.1, this time where the �Say
hello to� (or sayHello, as it appears here) procedure is not de�ned. The
screenshot shows the error marker around the unde�ned concept.

4. Implement basic language constructs and basic languages to allow users to
start programming in Cedalion. This includes the procedural programming
constructs, and some simple language constructs for handling sets.

3.1.2.4 User DSLs and Programs

With the base-code (the bootstrap package) in place, users have all they need
to start working. Typically, this will start with de�ning DSLs, and continue to
implementing the software using these DSLs. However, following the Cedalion

philosophy, there is no strict destinction between the two. As in traditional
programming, where programming can be seen as de�ning more and more ab-
stractions (functions, classes, etc), where some of them (e.g., the main function)
provide an interface to the outer world, Cedalion programming is also about
building abstractions one on top of the other. Some of these abstractions can
be conveniently called DSLs, while others are �simple� extensions, such as pro-
cedures, functions and predicates, which also exist in traditional programming
languages. As in traditional programming, these abstractions are worthless un-
less they have a real-life meaning. They need to interface to something in the
outer world. This can either be the CPI (if the program is intended to run from
within the CedalionWorkbench), or some other public interface, designed as the
interface between the Cedalion program and some dedicated client.

CHAPTER 3. SOFTWARE DESIGN 19

3.2 Functionality

In Section 3.1 we discussed the �anatomy� of the CedalionWorkbench. In this
chapter we shall discuss its �physiology�, how it does the things it does. We
start by describing the main design principle: the client/server approach. Then
we revisit the functional requirements de�ned in Section 2.3, and provide the
design behinds them.

3.2.1 Design Principles: Client/Server Approach

Cedalion is a pure logic programming language. This means that code in Cedalion

can only provide results to queries (answer questions), but by itself, it cannot do
anything. It cannot display anything on the screen, and cannot write anything
to the disk. It cannot even change the contents of its own logic database (as do
the predicates assert and retract in Prolog). Cedalion's way of doing things is
related to its client/server approach.

3.2.1.1 Client/Server Examples

As mentioned in Chapter 3.1, Cedalion is based on a client/server approach.
The CedalionWorkbench is one example for this approach (where the client is
an Eclipse plug-in), but de�nitely not the only one. For practical applications,
Cedalion code should be deployed in a client/server architecture as well. The
server side remains the Cedalion program running on top of a Cedalion logic
engine, but the client side can di�er from one application to the other.

One possible client is a client for GUI applications. Such a client should
have the capabilities to open windows and interact with the user, but should
have no knowledge on the actual application that needs to run. The same client
can thus be used for di�erent applications. The client in this case shall make
queries to the server to receive the layout of the windows to open, and what to
do on user events.

Another example is supporting web applications. For these, the �client�
is actually a web server (e.g., a Java Servlet). It is a relatively simple and
generic server, capable of transforming HTTP requests into Cedalion queries,
and transforming the answer to these queries into HTML. The same web server
(the �client� in Cedalion's terms) can be used for various applications. The
(Cedalion-level) server provides the actual application logic.

3.2.1.2 Procedures and Commands

Regardless of the nature of the client, it is sometimes required to perform ac-
tions. For example, the web-server acting as a Cedalion client may often be
requested to add records to a database (for data-driven web applications). In
Cedalion, we use procedures and commands for this purpose.

Commands are terms understandable by the client, which stand for per-
forming some action. A command can be for adding a record into the database,

CHAPTER 3. SOFTWARE DESIGN 20

openning a window, saving some data to a �le, etc. Commands should have all
the information needed to perform their action, such as the name of the table
and the data to insert, or the name of the window to open, which in turn can be
used to query its contents. Commands can be compound, including other com-
mands. For example, the doAll command supported by the CedalionWorkbench

contains a list of commands and performs them one by one.
Procedures are higher level entities, still representing actions to be performed.

Unlike commands, procedures are understood by the Cedalion program, and not
the client. The Cedalion program can translate a procedure into a command
using the procedureCommand predicate. Implementing this (mainly through
procedure statements) provides a way for procedural programming in Cedalion.
Procedures can call one another through the doProc command, which runs a
procedure by querying the server (the Cedalion program) for the underlying
command, and then performing it. This creates a dialog between the client and
the server.

3.2.2 Requirements Walkthrough

3.2.2.1 Projectional Editing

Cedalion's projectional editing is implemented in parts at both the client and
the server sides. The client/server protocol for supporting projectional editing
de�nes the term descriptor, to refer to a handle to a part of the code, one
that can be projected to a view, and in most cases, modi�ed. A �normal�
descriptor (/bootstrap:descriptor), one representing a part of the code being
edited, contains a path to the code element. A path consists of the �le name
and a list of indexes representing the path that needs to be taken in the abstract
syntax tree (AST) of the code, in order to reach that code element. This is a
unique identi�er for a code element. Given a path, the current contents can
be queried and modi�ed. Cedalion's bootstrap package provides a predicate
(/bootstrap:termAtPath) for querying the contents of a code element (given a
path), and a procedure (/bootstrap:setAtPath) for modifying its contents. By
providing the path, a descriptor allows the projectional editing mechanism in
Cedalion to edit code elements.

The CPI includes the predicate visualizeDescriptor, which provides the vi-
sualization for a given descriptor. This predicate is Cedalion's entry point for
the implementation of its projectional editing. The implementation fetches the
underlying code element, consults its projection de�nitions to �nd an appro-
priate one (and uses a default projection if none is found). When doing so, it
relpaces the child elements with descriptor for the child elements, to allow them
to be visualized as well. The result provided by the Cedalion program is a term
representing visuals.

On the client side, each node in the returned term is turned into a Java object
representing some �gure to be displayed. Cedalion uses draw2d for visualization,
and all visualization objects are derived from draw2d's Figure class. Cedalion

has a mechanism for converting terms into Java objects, by querying Cedalion's

CHAPTER 3. SOFTWARE DESIGN 21

cpi:termClass predicate. This predicate matches a Java class to a term. The
client can assume that the class name does not change, and therefore the results
are cached on the client side.

3.2.2.2 The Text Bar

The text bar is implemented in part as part of the CedalionWidget (of pack-
age net.nansore.cedalion.eclipse), which is used as the editor control by the
CedalionEditor (of the same package). When aVisualTerm (package net.nansore.cedalion.�gures)
is selected, it takes over the text bar. It �rst replaces the content of the text bar
with a textual representation of the term represented by the VisualTerm ob-
ject. This representation is provided by calling the procedure cpi:termAsString,
which uni�es a given variable with the term at the given position as a string.

The text bar is editable by the user. The active VisualTerm listens to all
keystrokes. When the user hits Enter, the active VisualTerm calls the procedure
cpi:editFromString to replace the content represented by this VisualTerm with
the result of parsing the text in the text box using Prolog's syntax.

The cpi:termAsString and cpi:editFromString procedures use the termToString
and stringToTerm commands respectively, which are implemented by calling
Prolog predicates of these names, implemented in service.pl.

3.2.2.3 Auto-Completion

The CedalionWorkbench uses Eclipse's built in mechanism for auto-completion.
Cedalion provides an adapter (class CedalionProposalProvider, internal to CedalionEd-
itor in package net.nansore.cedalion.eclipse) to provide the completion propos-
als. This class calls the selected VisualTerm to retrieve the proposals (method
getProposals()). It performs a query to the cpi:autocomplete predicate. This
predicate takes the pre�x � the characters to the left of the caret in the text
box, as a �lter on the results. It also takes the code element path, to allow it
to retrieve the type of the requested concept, as another �lter.

The bootstrap package of the Cedalion program implements the predicate
retrieving the auto-completion options. It uses an internal predicate for retriev-
ing all concepts for the current type, and another predicate to check the aliases
of each concept. These aliases are matched against the pre�x entered by the
user. If the pre�x is a pre�x of the alias, the option is displayed.

Auto-completion is not only made for replacing content; it is also made for
inserting content. The suggestions for auto-completion take the current content
of the selected code element into account, and tries to place it as the �rst
argument of each suggestion, if that �ts. Doing so provides Cedalion users a
possibility to edit terms, not just from the outside in (as would be the case
where each entered concept is a new one), but also from the inside out. For
example, to enter the expression X+2∗Y , one could start by entering �X�, then
�+� and selecting the appropriate concept from auto completion, then select the
empty right-hand operand of the �+�, and enter �2�, then enter �*� and select

CHAPTER 3. SOFTWARE DESIGN 22

the desired concept, and �nally � select the right-hand operand of the �*� and
enter �Y�.

3.2.2.4 Aliases

Aliases are implemented entirely in Cedalion. They are answers to the /boot-
strap:aliasString predicate. This predicate has a clause providing each concept
its default alias: the name without the namespace pre�xing. More results are
provided using a rewrite rule (see Section 3.3 of [6]) translating alias state-
ments into clauses of the aliasString predicate. The alias statement allows DSL
developers provide custom aliases for their DSLs' concepts.

Additional rewrite rules provide aliases based projection de�nitions. They
rewrite certain forms of projection de�nitions into alias statements. These forms
include:

• Projection de�nitions where the projection is a label, where the label string
is taken as the alias.

• Projection de�nitions which specify a horizontal �ow, where either the
�rst or second element is a label. The label string is taken as the alias.

3.2.2.5 Context Menu

The context menu is displayed by theVisualTerm class (package net.nansore.cedalion.�gures),
as a response to a right click. The private method createContextMenu() creates
and displays the context menu. The construction of the context menu is done
by calling the cpi:contextMenuEntry predicate, implemented in Cedalion. The
arguments to this predicate are the descriptor associated with the VisualTerm
object (providing its location), and an unbound variable to retrieve a term de-
scribing the menu item to display, including the procedure to be executed once
the .

Then a popup menu is constructed for each result. Each entry is built by
instantiating a CedalionMenuItem (package net.nansore.cedalion.eclipse), which
builds the menu item, and registers the associated action. This mechanism is
polymorphic, so that other classes can be implemented to provide other kinds
of menu items, such as groups (which are not currently implemented). The
CedalionMenuItem class associates a callback with each menu item, one that
executes the associated procedure.

On the Cedalion side, the cpi:contextMenuEntry predicate is implemented
with a rewrite from the \bootstrap:contextMenuEntry statement. This state-
ment provides the caption to be written on the menu item, a pattern to be
matched against the part of the code which is right-clicked (the �context�),
place-holders for the path (the location of that piece of code), and the variable
name assignment, and the procedure to be executed. A newer version of this
statement also takes an image identi�er, for the icon to be presented besides the
caption. This statement is used extensively in Cedalion's bootstrap code, and is
also used in libraries.

CHAPTER 3. SOFTWARE DESIGN 23

3.2.2.6 Adapters

Adapters are implemented solely in Cedalion. The entry point is the /boot-
strap:checkAdapter predicate. A rewrite rule contributes to this predicate for
every /bootstrap:adapter statement.

Adapters are used by the bootstrap package in two places: For autocomple-
tion, and for resolving type mismatches automatically.

In autocompletion, the autocomplete predicate consults the checkAdapter
predicate to expand the search beyond the needed type, to also include concepts
that can be placed in that position wrapped in an adapter. This makes editing
much easier in some cases. In addition, when considering the existing content
as the �rst argument for the new content, adapters are taken into account as
well.

When a type mismatch occurs (either by entering code manually, or by
copying-and-pasting code into a certain location), Cedalion tries to resolve this
error automatically. Adapters are considered for the resolution of such errors.

3.2.2.7 De�nition Search

De�nition searches are also implemented in Cedalion. The context menu entry
providing the search runs the /bootstrap:doShowDe�nitions procedure. That
procedure is de�ned for every non-variable, and calls /bootstrap:showDe�nitions.
The reason for this split is to make the creation of the context menu faster, by
not waiting to actually build the output when the menu is constructed.

The showDe�nitions procedure builds a visualization term containing all the
de�nitions of the concept it takes as argument. Then it displays it in the Cedalion
view, by calling the showView command, implemented by the ShowView class
(package net.nansore.cedalion.cmd).

Bibliography

[1] M. Bachle and P. Kirchberg. Ruby on Rails. IEEE SOFTWARE, pages
105�108, 2007.

[2] S. Dmitriev. Language oriented programming: The next programming
paradigm. JetBrains onBoard, 1(2), 2004.

[3] M. Fowler. Language workbenches: The killer-app for domain spe-
ci�c languages. 2005. http://www.martinfowler.com/articles/

languageWorkbench.html.

[4] Martin Fowler. Projectional editing. Martin Fowler's Bliki.
http://martinfowler.com/bliki/ProjectionalEditing.htmlx.

[5] P. Hudak. Building domain-speci�c embedded languages. ACM Computing
Surveys (CSUR), 28(4es), 1996.

[6] David H. Lorenz and Boaz Rosenan. Cedalion: a language for language
oriented programming. SIGPLAN Not., 46:733�752, October 2011.

[7] Tim Menzies. DSLs: A logical approach, 2001. Lecture Notes, EECE 571F,
http://courses.ece.ubc.ca/571f/lectures.html.

[8] Boaz Rosenan. Designing language-oriented programming languages. In
Proceedings of the ACM international conference companion on Object ori-
ented programming systems languages and applications companion, SPLASH
'10, pages 207�208, New York, NY, USA, 2010. ACM.

24

Appendix A

Communication Protocols

A.1 The Cedalion Public Interface (CPI)

The list of concepts in the CPI is given in Figures A.1 and A.3. Please note
that they are given in arbitrary order.

A.2 Built-in Predicates

Built-in predicates are given in the �builtin� namespace. This namespace also
contains other concepts used by these predicates. Figures A.3, A.4 and A.5
provide a listing of all concepts in the builtin namespace.

A.3 Service Predicates

The following are Prolog predicates that provide services used by the Eclipse
plug-in.

insert(Statement) Adds the given Statement to the logic database.

remove(Statement) Removes the given Statement from the logic database.

generateFile(FileName, StringVar, Goal) Generates a �le named FileName,
containing a line per each result of Goal. The content of the line is the
string bound to StringVar.

readFile(FileName, Namespace, FileContent) Reads a Cedalion source �le
named FileName, and binds its content into FileContent. Namespace is
the default namespace to be used when reading the �le.

writeFile(FileName, FileContent) Writes FileContent into a Cedalion source
�le named FileName.

25

APPENDIX A. COMMUNICATION PROTOCOLS 26

F
ig
u
re

A
.1
:
C
P
I
L
is
ti
n
g
(p
a
rt

I)

APPENDIX A. COMMUNICATION PROTOCOLS 27

F
ig
u
re

A
.2
:
C
P
I
L
is
ti
n
g
(p
a
rt

II
)

APPENDIX A. COMMUNICATION PROTOCOLS 28

F
ig
u
re

A
.3
:
b
u
il
ti
n
N
a
m
es
p
a
ce

L
is
ti
n
g
(p
a
rt

I)

APPENDIX A. COMMUNICATION PROTOCOLS 29

F
ig
u
re

A
.4
:
b
u
il
ti
n
N
a
m
es
p
a
ce

L
is
ti
n
g
(p
a
rt

II
)

APPENDIX A. COMMUNICATION PROTOCOLS 30

F
ig
u
re

A
.5
:
b
u
il
ti
n
N
a
m
es
p
a
ce

L
is
ti
n
g
(p
a
rt

II
I)

APPENDIX A. COMMUNICATION PROTOCOLS 31

stringToTerm(String, NSList, Term, VarNames) Converts String into Term.
It uses the namespace bindings in NSList, and binds the variable name
bindings to VarNames.

termToString(Term, VarNames, Depth, NSList, String) Converts Term
into String. It trims all sub-terms deeper then Depth. VarNames are
assumed to contain the variable name bindings to be used, and NSList
contains the namespace aliases.

loadFile(FilePath, Namespace) Loads a �le named FilePath into the logic
database. It uses Namespace as the default namespace for the �le. If the
�le has already been loaded, its previous content will �rst be removed.

